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1.0 Introduction

Since 2017, the Central Bank of Belize has been using a nowcasting framework consisting of
11 linear dynamic industrial models and 34 bridge indicators to estimate Belize’s GDP quarterly.
Initially developed by Arana (2015), this framework allowed the Bank to produce quarterly GDP
estimates within five weeks of a quarter’s end, providing stakeholders with a timelier view of economic
conditions. In comparison, the Statistical Institute of Belize (SIB) produces its first round of quarterly
GDP estimates nearly three months after the quarter under review.

The need to update the nowcasting framework was motivated by the impact of SIB’s GDP rebasing
exercise in 2022. The rebasing exercise, which used the System of National Accounts (SNA) 2008
compared to SNA 1993, identified seven new industries, rendering the old nowcasting framework
obsolete (SIB, 2020). Additionally, the nowcasting model’s accuracy plummeted in the wake of
the COVID-19 crisis, with the Mean Absolute Percentage Error (MAPE) more than doubling from
4.1% to 8.7%. Its sectoral components, anchored on ordinary least squares (OLS) and autoregressive
integrated moving average (ARIMA) models, could not predict the erratic shifts in economic
conditions. Consequently, the model’s efficacy in forecasting short-term GDP diminished, leading to

higher margins of error and reduced reliability of the overall GDP estimate.

To address these challenges, this paper aims to enhance the Central Bank’s GDP nowcasting framework
to better capture the structural changes, arising from the GDP rebasing exercise, and to model the
sharp economic fluctuations, stemming from the COVID-19 shock. This involved an overhauling of
the existing 11 sectoral model framework to utilise 16 Autoregressive Integrated Moving Average with
exogenous variables (ARIMAX) models, employing the Box-Jenkins (1968) approach. To address the
heterogeneous response to the pandemic across industrial categories, dummy variables are strategically
incorporated to improve model accuracy. The exogenous variables were guideded by the SIB’s “System
of National Accounts Documentation” (2020).

A comprehensivereview of the previous and proposed frameworks’ performance revealed improvements
in the accuracy of quarterly GDP estimates, with the MAPE improving from 6.1% between 2017Q1 and
2022Q1, to 2.1% between the same period. The enhanced precision of the new nowcasting framework
should provide the Central Bank with timely insights into the economic landscape and reveal nuanced
changes across sectors over time. This granular understanding will enable the identification of

sector-specific trends and serve as an early warning system for potential economic imbalances.

The paper is structured as follows: Section II reviews the pertinent literature. Section III covers the
methodology employed in constructing the ARIMAX models. Section IV presents empirical results,
while Sections V and VI provides a discussion on the results generated and conclusions, respectively.



2.0 Literature Review

2.1 Nowcasting and Evolution of Techniques

Nowcasting, or the prediction of current economic conditions based on available data, plays a crucial
role in informing timely policy decisions and providing stakeholders with up-to-date assessments
of economic performance. The importance of accurate and efficient nowcasting frameworks has
been underscored by recent events such as the COVID-19 pandemic, which caused unprecedented
volatility and structural shifts in economies worldwide. In recent years, there has been a growing body
of research focused on developing and refining nowcasting methods. Studies have explored various
approaches, including bridge models, dynamic factor models, and mixed-frequency data analysis, to
enhance the accuracy and timeliness of GDP estimates. Since Giannone, Reichlin, & Small (2006)
introduced a formal process for updating nowcasting frameworks, numerous techniques and tools

have been developed to improve the accuracy and timeliness of estimates.

2.2 Bottom-Up Approach to Nowcasting

Previously, the Central Bank relied solely upon a bottom-up approach, aggregating 11 sectoral bridge
modelsto produce a quarterly GDP estimate based on the work of Arana (2015). Although Arana (2015)
preferred indicator models, sectoral models were used due to limits on data availability and the added
benefit of observing nuanced trends within GDP’s various components through the disaggregation, as
was found to be the case in Kaustubh, Bhadury, & Ghosh (2024) and Dias, Pinhiero, & Rua (2016).

Several studies suggest that a bottom-up approach to nowcasting GDP components for subsequent
aggregation can enhance the accuracy of estimates. For instance, Dias, Pinheiro, and Rua (2016)
employed factor models to project expenditure-side components of GDP and found that performance
outstripped that of univariate benchmark models. Similarly, Hahn and Skudelny (2008) adopted a
production-side approach to forecast GDP sub-categories, demonstrating not only improved accuracy
but also the valuable insights gained from understanding the co-movements of underlying drivers
of economic growth. Moreover, the bottom-up approach also provided a means for accounting for
sector-specific shocks since abnormal growth levels in one component of GDP could be easily
identifiable and (Hahn & Skudelny, 2008). This characteristic was explored following the pandemic as
researchers sought to capture the impact of the pandemic across various economic sectors. Kaustubh,
Bhadury, and Ghosh (2024) produced a production-side nowcast in which the impact of the pandemic
was accounted for within each sub-categorical estimate. This was done using dummy variables
representing the onset of the pandemic, which were found to be statistically insignificant for select
subcategories and highly significant for others (Kaustubh, Bhadury, & Ghosh, 2024).

2.3 Challenges to Nowcasting: Structural Changes and Economic Shocks

Relationships between indicators and GDP can change over time, owing mainly to large structural
shifts, as noted in Hahn and Skudelny (2008). In developing countries, rebasing exercises, often result
in stark changes to the fundamental structure of an economy and underlying drivers of growth. For
example, Akpan & Udofia (2017) found that Nigeria’s largest contributor to growth had shifted away



from manufacturing to services in their study following a rebasing exercise. The consequences of this

were profound for Nigeria, as was also the case for Belize.

Bridge and mixed data sampling (MIDAS) models failed to capture the magnitude of impact
on GDP due to their primary premise of capturing the average behaviour of variables over a
period of time (Foroni, Marcellino, & Stevanovic, 2022). This was widespread as Arana (2015),
Cascaldi-Garcia, Luciani, & Modugno (2023), Kaustubh, Bhadury, & Ghosh (2024), and others
pointed out the ephemeral nature of the explanatory power for some indicators. The onset of the
COVID-19 pandemic also severely disrupted the effectiveness of sectoral models and other traditional
forecasting methods, as they failed to capture the impact of sharp fluctuations on GDP (Cascaldi-
Garcia, Luciani, & Modugno, 2023).

2.4 Innovations in Nowcasting in Response to the Pandemic

Incidentally, the pandemic catalysed growth in research within the field of nowcasting resulting in a
growing body of work on the subject matter. The focus of these studies were multifaceted, ranging
from the recalibration of models and frameworks using more sophisticated econometric tools as was
the case in Cascaldi-Garcia, Luciani, & Modugno (2023), to the reworking of simpler approaches
such as Dias, Pinhiero, & Rua (2016), as well as the incorporation of alternative data sources like
Nakazawa (2022) and Kaustubh, Bhadury, & Ghosh (2024). The pandemic severely impacted the
ability of nowcasting models to assess the severity of the economic downturn. This was stated by
Foroni, Marcellino, & Stevanovic (2022) and Nakazawa (2022), in observance of their respective
bridge and unrestricted mixed data sampling (UMIDAS) models, which failed to predict the depth of
the downturn due to a lack of timely, statistically significant data. The same holds true for the more
sophisticated Dynamic Factor Models (DFM), which were widely employed during the pandemic.

Most models were not equipped to capture the magnitude of the pandemic without significant
adjustment through the incorporation of alternative high-frequency data sources such as in Cascaldi-
Garcia, Luciani, & Modugno (2023) and Kaustubh, Bhadury, & Ghosh (2024). Machine learning
techniques have demonstrated some superiority in predicting both the occurrence and depth of
contraction brought on by anomalous occurrences. In Maccarrone, Morelli, & Spadaccini (2021),
traditional ARIMA and SARIMAX models were pitted against a machine learning model, which
emerged as the most accurate model when nowcasting one quarter ahead, with significantly smaller
margins of error. Similarly, a study across six European countries, Dauphin, et al. (2022) found that
machine learning models surpassed benchmark and DFM models in reducing forecast errors during
the pandemic in most countries. Barrios et al. (2021) furthered the discourse in Belize by introducing six
machine learning models, including lasso regressions, random forest algorithms, and neural networks.
These models generate a singular quarterly GDP estimate, compiled into an ensemble figure based
on weights derived from the inverse of RMSE produced by each model (Barrios, Martin , Escobar,
Pena, & Leslie, 2021).



Nevertheless, the performance of traditional models cannot be discounted, as Maccarrone,
Morelli, & Spadaccini (2021)’'s SARIMAX models outperformed the machine learning models when
looking at longer horizons and with the introduction of covariates. It is important to note that the
current framework utilised by the Bank is a bottom-up approach employing 11 bridge sectoral models
to produce one estimate. This approach, distinct from both Maccarrone, Morelli, & Spadaccini (2021)
and Barrios et al. (2021), provides a more nuanced observance of the economy. Such approaches to
nowcasting are rare but not unprecedented.

2.5 Theoretical Framework for the Current Study

The use of dummy variables to capture the impact of the pandemic on economic activity has been
explored to varying degrees in the years since the outbreak. In their study of addressing outliers
within their vector autoregressive (VAR) models, Carriero et. al (2024) opted to use dummy variables
to capture the monthly impact of the pandemic, which absorbed the VAR residuals, improving the
fitness of the model. Meanwhile, Furceri et. al (2021), utilise dummy variables within their models
to capture multiple pandemics within a 20-year span and assess the most recent pandemic’s impact
on inequality. Nevertheless, the most relevant study that mirrors the efforts of this paper remains
Kaustubh, Bhadury, and Ghosh’s (2024). Their use of dummy variables to capture the pandemic’s
effect within a bottom-up approach to nowcasting GDP, combined with Maccarrone et al. (2021)’s
ARIMAX-based approach to nowcasting forms the theoretical backbone of this paper.



3.0 Methodology

3.1 Overview

This paper aims to enhance the Bank’s GDP nowcasting framework to accurately capture recent
structural changes brought on by a recent rebasing exercise and effectively model the impact of the
pandemic. Within this section, the application of the Box-Jenkins (1968) three-step approach allowed
for the creation of 16 ARIMAX industrial models. These were then aggregated to nowcast quarterly
constant GDP.

To capture the heterogenous effects of the pandemic on the various industries, two dummy variables
were created. These variables represent the initial downturn and subsequent rebound in GDP activity
during and after the pandemic'. The inclusion of these dummies, either individually or in combination,
was informed by Chow breakpoint tests conducted for each industry. The exogenous component
in each of the 16 models were then drawn identified from the SIB’s “System of National Accounts”
documentation. Following these steps, the industrial models were estimated, with relevant diagnostics
conducted.

3.2 Industrial Models

3.2.1 Selection of Industrial Groupings

Following the SIB’s 2022 GDP rebasing exercise, the number of industrial classifications rose from
11 to 21, see Table Al. In this paper, the 11 additional industries were aggregated into six industrial
groupings®. This study diverges from the previous framework’s structure of modelling each industrial
classification for two reasons. The first was the unavailability of timely variables. The second was lack
of utility gained from nowcasting industries with miniscule waited contributions to GDP. Table 1

below identifies the new industrial groupings.

Table 1: Components of Industrial Grouping

Industrial Components Grouping Name
Mining Mining

Water Supply Water Supply

Real Estate Activities Real Estate Activities

Professional Scientific and Technical Activities Professional and Administrative Activities
Administrative and Support Service Activities

Education Education and Health Activities
Human Health and Social Work Activities
Information and Communication Other Activities

Arts, Entertainment, and Recreation
Other Service Activities
Activities of Households as Employers

1'Q1 2020 - Q4 2021
2 Due to the absorption of subcategory “Fishing” into “Agriculture, Forestry, and Fishing,” only 10 of the initial 11 industrial categories
remained, with 11 new categories identified.



The grouping of eight industries together to form three categories resulted from an investigation
into the explanatory power of the selected exogenous variables in determining the gross value added
(GVA) estimates of the industries. Given that variables for the six industries were not available in a
timely manner, the suitability of various alternate quarterly and monthly indicators were assessed via
correlation testing for the eight industries. This was done according to the SIB’s guidelines provided
in the “System of National Accounts Documentation” (2020), which outlines the methods and indicators
used to compile GDP and its industries. From here, industries that shared explanatory variables were

combined.

As a result, “Professional Scientific and Technical Activities” and “Administrative and Support Services
Activities” were aggregated into “Professional and Administrative Services,” with GST, business tax,
and BPO inflows proven to be significantly correlated variables. Similarly, “ Education” and “Human
Health and Social Work Activities” were combined into “ Education and Health Activities,” sharing current
fiscal expenditure as an explanatory variable. The largest amalgamation was of the four categories
“Information and Communication,” “Arts, Entertainment, and Recreation,” *Other Service Activities,” and
“Activities of Households as Employers” into “ Other Services,” which found tourism arrivals to be the most

appropriate variable.

3.2.2 Data Selection

For the 16 proposed industrial models, 42 exogenous explanatory variables were used. All indicators
were used by the SIB, as shown in their “System of National Accounts” (SIB, 2020) documentation,
to generate estimates of value-added output across the industries. To directly nowcast 10 industrial
models, 12 variables are utilised, as shown in appendix table A2. The remaining six models use
five indices shown in Table 2. The indices were constructed using 30 variables in accordance with
specifications provided by the SIB and are standardised to the base year of 2014. The construction of
these indices arose to avoid the issue of overfitting the models.

Table 2: Industrial Models Utilising Indices as Exogenous Variables

Index Industrial Model

Agricultural Index Agriculture, Forestry, and Fishing
Manufacturing Index Manufacturing

Tourist Arrival Index Hotels and Restaurant Activities

Other Service Activities
Transportation Index Transportation
Professional and Administrative Services Index Professional and Administrative Activities




3.2.3 Dummy Variables and Chow Breakpoint Test

As previously mentioned, to capture the effects of the pandemic on the 16 industrial categories two
dummy variables were created. The first, “COVID 2020” captures the initial downturn in economic
activity between the first quarter of 2020 and the first quarter of 2021. The second, “COVID 2021”
encapsulates the period of high GDP growth noted between the second quarter of 2021 and first
quarter of 2022. To determine the placement of the variables, a Chow Breakpoint Test was conducted
on each of the 16 industrial groupings to determine when each industry specific breakpoint occurred.
The equation for the test given as:

RSS—(RSS1+RSS;) o T2k
RSS, +RSS, k

(1)

Where RSS is the sum of squared residuals of the sample series, RSS is the sum of squared residuals
before and up to the identified break date, RSS, is the sum of squared residuals at and after the identified
break date, T is the number of observations, and k is the number of regressors in the equation. The
results of this test, dictating which dummy variables were included in each industrial model is found
below in Table 3.

Table 3: Results of Chow Breakpoint Test

Industrial Groupings COvID2020 COVID2021
Agriculture, Forestry, and Fishing

Mining \

Manufacturing

Electricity

Water Supply

Construction

Wholesale and Retail Trade
Hotels and Restaurant Activities

2 2 2 =2 <2
< 2

Transportation

Financial Activities

Real Estate Activities

Professional and Adminstrative Activities

< 2 2 =2
2L 2 =2 2 2

Public Administration and Defence Activities
Education and Health Activities

Other Service Activities \
Taxes and Subsidies




3.3 ARIMAX Model and Components
An extension of the ARIMA model, the ARIMAX model incorporates the influence of one or more
exogenous variables in estimating forecasts. The three parameters of the ARIMA model (p,d,q) are as
follows:
The autoregressive AR(p) component is defined as: 3.4 ARIMAX Model Fitting

YVe= 0uye 1 +02)e o2+ + 0¥ p + & @)

@
= Z Djyej+ &
i=1

Where Y; is the current observation, y;_; are the past observations, @ is the autoregressive order
of the process with coefficients @;. and &; is the white noise component. When incorporating a lag

operator, the AR(p) takes the basic form:
Ye = E?:l ?; Ly, +& (3)

Where @(L) =1 — E?:l 0; L7 is defined as the lag polynomial that characterises the AR process.

The addition of a mean to the model produces the AR model below.

OCLI(Y: — pe) = € (4)
The moving average M A(qg) component of the ARIMAX model is comprises of:

Yi =g + 018 1 +pbog 5+ -+ 015 (5)

q
= & + ZSJ Ei’—j
=1

= 0(L)&;

Where &, is the current disturbance, &;_; are the past disturbances, 8;are the parameters of the

MA model, and 6(L) are the moving average polynomial that characterises the MA process.
When both AR and MA processes are combined, they form the ARMA equation:

Yt = leyt—l + @2}’5_2 + -+ ®]?YE—‘,‘J + E — Blst_l — 62£t—2 — e — ﬁq‘gt—q (6)

p(L)(Yy — ) = 6(L)e;

Thus, when incorporating the integrated order I(d). an ARIMA (p, d, q) is formed as:

P(L)(1 — L) (Y, — pe) = 8(L)e; (7)

Lastly, the addition of exogenous variables reveals the final ARIMAX model form as:
P(L)(1 — L) (Y, — pe) = Pnxns + 0 (L)e (8)

Where 5, x, + is the coefficient of the exogenous variable(s).

8



3.4 ARIMAX Model Fitting

For the 16 ARIMAX models, the Box-Jenkins three-stage approach was implemented, namely
model identification, estimation, and diagnostic checking. The 16 industrial series were found to be
non-stationary, and their appropriate AR and MA orders were identified. Following this, the most
appropriate model is selected for each industrial grouping after comparison utilising the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information
Criterion (HQIC). Thereafter, following forecasting of the models, the models are checked for
invertibility. Lastly, to evaluate the results, the measures of forecast accuracy are set forth.

3.4.1 Identification & Estimation

The properties of the 16 industrial GVAs were analysed for stationarity through graphs and
correlograms generated for each. None of the variables were found to be stationary. Following this,
Augmented Dickey Fuller tests (ADF) were conducted for each to identify the level at which the
variables are stationarity. The results are summarised in Table 4 below. the Autocorrelation function
(ACF) and Partial Autocorrelation function (PACF) are then utilised to determine the number of MA
and AR terms, respectively. This is also highlighted in Table 4.

Table 4: Differencing and AR/MA Order Results for Industrial Groups

Industrial Groupings Differencing AR Order MA Order
Agriculture, Forestry, and Fishing 1st 2 2
Mining 2nd 1 1
Manufacturing 1st 2 2
Electricity 2nd 2 1
Water Supply 2nd 2 1
Construction 2nd 8 1
Wholesale and Retail Trade 2nd 4 1
Hotels and Restaurant Activities 2nd 2 2
Transportation 1st 1 1
Financial Activities 2nd 6 1
Real Estate Activities 1st 4 6
Professional and Administrative Activities 1st 3 1
Public Administration and Defense
Activities 2nd 1 4
Education and Health Activities 1st 1 4
Other Service Activities 2nd 1 1
Taxes and Subsidies 2nd 1 1




3.4.2 Estimation

Following the identification of possible suitable models for each of the 16 proposed, the models were
estimated using the maximum likelihood method and compared. Those with the lowest AIC, BIC and
HQIC values were selected for forecasting. The AR and MA components were found to be significant

across the 16 models.

3.4.3 Diagnostics

To ensure the selected models satisfy the requirements for a stable univariate process, the ACF and
PACEF plot of residuals are evaluated, and unit root tests are conducted. The Ljung-Box Q statistics are
analysed for each of the 16 models to ensure residuals are white noise. Thereafter, the results of the
unit root test for serial correlation across the 16 models showed that no root of the estimated models
fell out of the -1 and +1 bounds, therefore satisfying the requirement of invertibility®. The results of

this test can be found in Figure 1 below.

Figure 1: Roots of Characteristics Polynomial for 16 Industrial Models
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3.4.4 Assessment of Forecast Accuracy

To assess forecast accuracy, three methods are utilised to test different aspects of the results of the
models. The first method is the Root Mean Square Error (RMSE) statistic, which measures the
difference between the predicted and estimated values by analysing the standard deviation of the
residuals. It is represented by the equation:

J (e — V)2 R (9)

Where the forecasted value is denoted by l;t"t, the actual value is Y, the forecast sample is 7+4, and
the period is defined as .

The second method is the MAPE approach, which represents the average of the absolute percentage
errors of each entry to calculate the accuracy of forecasted values in comparison to actual values. It is
represented by the equation:

100 Y27

s 0

Lastly, the Theil U2 coefficient is used to determine the forecast quality and adequacy of the models.
It is represented as:

g;ﬁzam—mz
Uy = (11)
;E?:J_Y?
In the first two methods, a value closer to 0 is desirable to show forecast accuracy. In the Theil U2

coefficient, 0 is also desirable to show accurate forecasts. However, a Theil U2 value equal to or above
one denotes a weak model.

11



4.0 Results

The GVA of 16 industrial ARIMAX models for the period 2017Q1-2022Q4 were forecasted and
aggregated to arrive at an estimate of quarterly GDP, which were then compared to actual estimates.
Thereafter, forecast accuracy was assessed utilising the RSME, MAPE, and Thiel U2 coefficient. The
utilisation of all three methods was implemented with the goal of capturing the most holistic view of
the forecast performance of the models. The RMSE would indicate whether large errors are present
within the forecast, while the MAPE adds the dimension of overall accuracy relative to the scale of
the data. The Thiel U2 coefficient would contribute an assessment of the model’s ability to capture the
dynamics of change in the variable.

It was found when assessing the RMSE and MAPE that three of the 16 forecasts had higher than
average test statistics, respectively, while a total of five did not fall within acceptable bounds when
gauging the Thiel U2 coefficient. Interestingly, only one of these seven models were found to have all
three of the unfavourable statistics concurrently.

4.1 Aggregated ARIMAX Model Results

The natural logarithm values generated by the 16 industrial models were expanded and aggregated
for comparison to the actual estimates. These results are summarised in the figures below. When
aggregated, the RMSE for the forecast period of 2017Q1 — 2022Q4 was 2.8%, while the MAPE was

2.5%, indicating relatively accurate forecasts.

Figure 2: Forecasted GDP Percent Change Versus Actual GDP Percent Change

40.0 -
35.0 A
30.0 -
25.0 -
20.0 -
15.0 ~
10.0 A

5.0

0.0
-5.0
-10.0
-15.0
-20.0
-25.0
-30.0 A

a2 a3 s
2022

a2 as|as
2021

at |2 as|as
2020

02| o3 s
2019

a|a2|as] s
2018

a2 as|as
2017

= Actual —Forecast

12



Smn

1,400

1,300

1,200

1,100

1,000

900

800

Figure 3: Forecasted GDP Value Versus Actual GDP Value
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The models performed best in estimating the GVAs of the pre-pandemic era, as shown in Table 5, with
the RMSE totalling 2.5% of GDP between 2017 and 2019, compared to 3.0% between 2020 and 2022.
The MAPE reflected a similar narrative, averaging 2.3% in the pre-pandemic era, and 2.7% in the
post-pandemic era. Volatility towards the end of the time series can be inferred from the disaggregated
examination of the industrial models.

Table 5: Aggregated Annual RMSE and MAPE

RMSE MAPE
2017 23.6 2.0
2018 311 2.6
2019 27.6 2.3
2020 27.7 2.6
2021 38.2 2.9
2022 33.7 2.6
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4.2 Assessment of ARIMAX Model Forecast Accuracy

The 16 ARIMAX models forecasted the period 2017Q1 to 2022Q4 and yielded results that were tested
for forecast accuracy, summarised in Table 6 below. The results indicated mixed results when analysing
each of three unique measures of forecast accuracy. A description of these various combinations of
results is provided in Table 7.

Table 6: Measure of Forecast Accuracy by Industrial Model

Thiel U2
Industrial Groupings RMSE MAPE  Coefficient
Agriculture, Forestry, and Fishing 0.16 3.14 0.31
Mining 0.24 6.83 1.03
Manufacturing 0.11 1.98 0.29
Electricity 0.25 7.45 0.84
Water Supply 0.04 1.38 0.69
Construction 0.15 3.31 1.59
Wholesale and Retail Trade 0.05 0.72 0.56
Hotels and Restaurant Activities 0.19 10.34 0.09
Transportation 0.12 2.75 0.41
Financial Activities 0.04 0.65 1.38
Real Estate Activities 0.01 0.18 1.63
Professional and Adminstrative Activities 0.16 3.33 0.77
Public Administration and Defence Activities 0.04 0.78 0.61
Education and Health Activities 0.03 0.40 0.39
Other Service Activities 0.12 2.26 1.49
Taxes and Subsidies 0.06 1.03 0.66
Table 7: Forecast Accuracy Conditions
RMSE/MAPE Condition Thiel U2 Coefficient Condition
(Level) (Direction) Result
Low RMSE/MAPE Low Thiel U2 Coefficient Model robustly estimates the general

level and direction of a variable

Low RMSE/MAPE High Thiel U2 Coefficient Model estimates the general level of
a variable but not the direction and
magnitude of changes

High RMSE/MAPE Low Thiel U2 Coefficient Model estimates the direction and
magnitude of changes but not the
general level of the variable

High RMSE/MAPE High Thiel U2 Coefficient Model does not estimate the general
level or the direction and magnitude
well
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Analysis of the RMSE, estimated from the difference between the actual and forecasted values, revealed
that all models held relatively low values. While the RMSE does not have a standard range to measure
results by, the general rule dictates that the closer the value is to 0, the more accurate the forecast is.
When testing for outliers, the RMSEs of three models were identified, “ Mining”, “Electricity”, “ Hotels

and Restaurants”.

When the same exercise was carried out for the MAPE statistics, the previous three outliers reappeared.
Nevertheless, all MAPE statistics except for one, fell within the acceptable range of p(Y ) < 10% as per
Lewis (1982).

The Thiel U2 coefficient is a statistic that measures how well a model predicts changes in a variable.
The closer the value is to 0, the better the forecast performance, however, if the value exceeds 1.0, the
forecast is deemed inferior to a simple no change naive forecast. From the industrial forecasts, five
were identified with a Thiel U2 coefficient exceeding 1.0, with three surpassing the acceptable range
by large margins. These were “ Construction,” “ Real Estate Activities,” and * Other Service Activities.”

Incidentally, only the “Mining” model produced forecasts in which the RMSE and MAPE were outside
the acceptable bounds, and their Thiel U2 coefficient surpassed the 1.0 acceptable range, albeit by a
marginal level. This suggests that the model is poorly estimating the general level of the variable
and the direction and magnitude of changes. Thus, four forecasts failed to meet expectations in only
one test, two failed in two tests, and only one failed in all three tests. Nine of the forecasts produced
excellent results, as identified by their RMSE, MAPE, and Thiel U2 coefficients. Notably, the worst
performing models contributed the least to GDP. These results can be summarised in Table 8 below
along with their contribution to GDP.

Table 8: Summary of Forecast Accuracy

Number of Forecast Number of Tests Contribution of
Models Failed Industries to GDP
1 3 2.4%
2 2 7.8%
4 1 23.9%
9 0 66.0%
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4.3 Overview of Dummy Performance

For quite a few of the models, the dummy variable was deemed statistically insignificant. However,
it was noted that without them, the models failed to capture the impact of COVID. The p-value used
to assess statistical significance was geared towards consistent long-term relationships. Thus, due to
the nature of the shock, it registered a high p-value. Nevertheless, they were included, as practical
significance trumps statistical significance, especially when considering that the RMSE, MAPE, and
Thiel U2 coefficients were significantly improved when including one of or both dummy variables.
The issue of overfitting is addressed by the fact that the dummies are the only variable with high

p-values within the models.

Overall, the inclusion or exclusion of the dummy variables within each required sectoral model
was evaluated individually. Within the “Wholesale and Retail Trade” industrial grouping, COVID
affected both 2020 and 2021 according to the breakpoint test. However, apart from being statistically
insignificant, it did not improve the R square or adjusted R square. Nevertheless, it did improve the
Theil U2, MAPE, and RMSE by marginal levels. Thus, its inclusion in the model was dubious at best
and ultimately included. For “ Transportation,” the COVID2021 dummy was found to not contribute to
any sort of improvement in the model. Thus, despite its suggested inclusion based on the breakpoint
test, it was removed. This was also the case for the “Other Service Activities” and “Mining” industrial
groupings. In “Professional and Administrative Activities”, only the COVID2020 dummy contributed to
the improvement of the model leading to the removal of the COVID2021 variable.
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5.0 Discussion

5.1 Industrial Model Performance

The worst performing model was “Mining,” which did not forecast the general level or magnitude and
direction of the dependent variable. This can be attributed to a few reasons. The explanatory variable
‘oil production value’ was chosen as the better alternative indicator for use in the sectoral model, as
financial data for crude oil extraction, oil exploration, and mining of minerals are not available on
a high frequency basis. The indicator was found to be highly correlated with the GDP category but
not total GDP and its inclusion in the model alongside the COVID2020 dummy variables, which
served to capture the structural breaks following the pandemic, yielded weak results. A high MAPE
highlighted the indicator’s unpredictability in estimating movements in the category, which was
reinforced when analysing the RMSE level. Lastly, the Theil U2 coefficient indicated a poorly
performing model. Nevertheless, given the category’s low contribution to GDP (2.3%), and the lack
of alternative indicators, the results were accepted. The full dynamic forecast results for the model are
outlined in Figure 4 below.

Figure 4: Dynamic Forecast Results for Mining Industrial Model
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Of the two models which did not meet the requirements of two tests, “Hotels and Restaurants”’
performed the worst. Despite the model capturing the direction and magnitude of changes, it was
unable to capture the general level of the variable. The index “Tourist Arrival Index” selected to
nowcast “Accommodation and Food Service Activities” produced a high correlation coefficient when
tested against the GVA. Thus, the indicator provides an accurate measure of activity in the GDP
category. Nevertheless, as a substitute for actual expenditure on accommodation, food, and beverage
services compiled annual by the SIB, the indicator did not sufficiently capture the dynamics of a given
quarter, leading to the high RMSE/MAPE score. It is suspected that the dynamic nature of spending,
particularly changes in average expenditure, cannot be accurately captured by arrival figures alone.
Thus, this led to significant differences between actual and forecasted values, despite the model’s
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capture of the general trend, as seen in Figure 5 below. The inclusion of dummy variables for 2020

helped to account for the structural break brought on by the event.

Figure 5: Dynamic Forecast Results for Hotel and Restaurants Industrial Model
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By Lewis’ (1982) metric, the forecast for “Electricity” had an acceptable MAPE score, below 10%.
Nevertheless, when plotted, its RMSE and MAPE proved to be outliers, despite having an appropriate
Thiel U2 coefficient. As was the case with “Mining,” the lack of alternative variables led to only one
explanatory variable, Electricity Generation and the COVID2020 dummy to be used in the sectoral
model. However, the results were deemed acceptable as the general direction and magnitudes of
changes were well estimated. Thus, it included in the overall calculation of total real GDP. Notably,
in terms of average contribution to GDP between 2000 — 2022, “Electricity” was the smallest GDP
category with a high MAPE. The results are presented in Figure 6 below.

Figure 6: Dynamic Forecast Results for Electricity Industrial Model
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From Table 6, four models were identified with unacceptable Thiel U2 coefficients above 1.0. According
to theory, this would make the forecast models unacceptable as they do not capture the direction
and magnitude of changes. However, they all produced low RMSE and MAPE levels, indicating
they estimate the forecasted GVA level to a sufficient degree. Thus, the acceptance of these results
depended solely on the specific goals and priorities of this study.

This goal is defined as capturing the general level of the variable for aggregation to nowcast total GDP

for a given quarter. With these considerations accounted for, the models are accepted solely based on

these factors:

1. The total GDP forecast displays highly accurate results, this is expected given that the three models
with the highest U2 coefficients only contribute to 10.1% of GDP.

2. The lack of timely indicators identified for use within the industrial models.

3. That revisions to these models will be forthcoming, either through an adjustment in the model
structure, the inclusion of alternative data, or the incorporation of newly available exogenous

variables.

5.2 Overview of Previous Model Framework
To demonstrate the improvement of the new framework of models, they are compared in the

subsequent sections.

The previous nowcasting framework utilised a bottom-up sectoral approach to aggregate 11 sectoral
estimates to produce a quarterly GDP forecast. Despite Arana’s (2015) preference for indicator
models, the bridge ARMA approach was chosen from the options presented as it provided a more
comprehensive explanation of the underlying drivers of economic growth. The models captured all
the major subcategories of GDP, with all three major sectors (the primary, secondary, and tertiary

sectors) accounted for.

5.2.1 Composition of Previous Models

The 11 bridge models were constructed as per Arana (2015), utilising a combination of OLS and
ARMA/ARIMA models and bridge equations. Bridge equations are linear regression models that use
high-frequency indicators to connect to a lower-frequency dependent variable. The model then uses
the temporally aggregated values as regressors in the equation to obtain forecasts of the low-frequency

variable.

Two models, “Agriculture” (AGDP) and “Other Private Services” (OPS), utilised OLS due to their unique
variable parameters and followed the model:

Y; = Bo + B1x1 + Paxg .+ Ppx, + 6 (1)

Where y, is the dependent variable to be determined, f, is the intercept, §, ..., is the coefficient, and

x, ...x are the independent variables.
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The remainder of the sectoral models employed an ARMA approach, defined as:
Y+c+ 9, Y-+ ¢, T,+-+ ¢p T;.p +0, T, ,+ o, T ,+-+ eq]—Lt—q te 2

Where 7Y, is the value of the time series at time t, the constant term is defined as ¢, ¢ p@,ye 9, are the
autoregressive coefficients at the order p, the moving average coefficients are ¢ ,0,, ...0 at the order g,

while ¢, represents the error term at time z.

5.2.2 Model Performance

Over the five-year period, following the implementation of the nowcasting framework, 21 quarterly
forecasts were conducted. From the estimates, it was observed that the Mean Absolute Percentage
Error MAPE) stood at 6.1%, while the Root Mean Square Error (RMSE) equalled $47.2mn or 6.9%
of the average actual GDP, and the Mean Absolute Deviation (MAD) totalled $8.1mn or 1.2% of the
average actual GDP. Given its ease of interpretation, this section will focus on the MAPE value and
errors. According to Lewis (1982), MAPE results with values of less than 10.0% are defined as highly
accurate forecasts. Thus, model outturns will be weighed against this metric.

As observed in Figure 8, discrepancies between the pre-rebasing GDP growth rate and the forecasted
GDP growth rates became more pronounced in mid-2019, leading to the onset of the COVID-19
pandemic. Five of the 11 sectoral models displayed high MAPE values, as noted in Table 9, with
the categories “Fishing,” “Hotels and Restaurants,” and “Producers of Government Services” recording
consistent double-digit error values. Basic nowcasting principles stress the need for constant updates
given the ever-changing relationship between indicators and GDP (Bragoli, Metelli, & Modugno,
2014). In sectoral forecasting, this deterioration of the explanatory power variables can be ascribed
to idiosyncratic forces affecting the movement of small components of GDP (Dias, Pinhiero, & Rua,
2016). However, based on trend analysis and informed judgment, it was found that the underlying
relationships between dependent and independent variables shifted for the five sectoral models,

resulting in larger discrepancies.
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Figure 7: Comparison of GDP Results for the Initial Nowcasting Framework
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Table 9: Mean Absolute Percentage Error for Sectoral Models in Initial Nowcasting Framework
(2017Q1 - 2022Q1)

MAPE
Agriculture, Hunting, and Forestry 5.7
Fishing 29.0
Manufacturing (including, Mining, and Quarrying) 7.2
Electricity and Water 3.3
Construction 6.0
Wholesale and Retail Trade; Repair 9.5
Hotels and Restaurants 14.9
Transport and communication 11.1
Other Private Services (excluding FISIM 1) 2.6
Producers of Government Services 15.0
Taxes on Products 4.2
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5.3 Comparison of Quarterly GDP Results

To compare the results of the current and previous nowcasting frameworks, the descriptive metrics
RMSE and MAPE were used to compare predicted and actual GDP estimates for the period 2017Q1
and 2022Q14.

Table 10: Comparison of Performance Metrics Between Previous and
Current Nowcasting Frameworks

Old Nowcasting New Nowcasting

Framework Framework
RMSE 47.2 30.7
MAPE 6.1 2.5

For Real GDP between 2017Q1-2022Q1, when the 11 and 16 sectoral models were aggregated to
calculate respective RMSE and MAPE values, the new nowcasting framework outperformed the old
in the two metrics employed. The RMSE improved by 35.0% between frameworks, while the MAPE
was reduced by 3.6 percentage points from 6.1% to 2.5%, overall.

Table 11: Comparison of MAPE Between the Pre- and Post-Pandemic Era

Old Nowcasting New Nowcasting

Framework Framework
MAPE: Pre-Pandemic Era 4.1 2.5
MAPE: Post-Pandemic Era 8.7 3.0

4 Despite estimates generated for 2017Q1 — 2022Q4 under the new framework, to compare like=to-like figures from the old framework,
the sample was reduced to 2017Q1-2022Q1.
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When comparing both models’ MAPE performances in both the pre- and post-pandemic era, the
new nowcasting framework significantly outperforms the old, as illustrated in Table 11 above. In
the previous framework, the MAPE value more than doubled between the pre- and post-pandemic
estimates from 4.1% to 8.7%, highlighting the model’s inability to accurately respond to the
multi-sectoral shock in 2020. However, in the new framework, the MAPE value remained relatively
stable, increasing by 0.5 percentage points, representative of the mixed performances of the various
sectoral models, yet highlighting the improved ability of the framework to account for the 2020 shock.

5.4 Major Takeaways

This paper’s aim was twofold; enhance the Bank’s GDP nowcasting framework to accurately capture
the recent structural changes brought on by the 2022 rebasing exercise and to effectively capture the
impact of economic shocks. To achieve this, the existing nowcasting framework was expanded to a total
of 16 sectoral models utilising 45 indicators, inclusive of two dummy variables. As per the bottom-up
approach, the estimates produced by the models were aggregated to arrive at a GDP estimate. Across
the forecast period, the framework produced an accurate estimate of GDP, significantly bolstering
the predictive power of the previous framework as proven by the RMSE and MAPE values tested.
Nevertheless, critical observations were made regarding the complexity of maintaining the current
number of models, as well as constraints brought on by the lack of timely indicators with sufficient
explanatory power.

With all 16 sectoral models, estimating their respective GDP categories and performing at variable
levels of accuracy, the likelihood for issues arising within a given model from quarter-to-quarter
warrants pause. Evidence for this arose from the observation of varying MAPE levels for the models,
which highlighted three models with higher-than-average levels of inaccuracy. Notably, the three worst
performing models were tied to three of the smallest GDP categories in terms of their contribution to
GDP. It was suggested in one study that the smaller components of GDP behave in a more volatile
manner, driven by idiosyncratic forces (Dias, Pinhiero, & Rua, 2016). Alternatively, it is outlined
in this paper that the weakness may stem from the explanatory variables chosen. Nevertheless, the
models were kept in the framework despite their performance, as their contribution to the overall GDP

estimate is insignificant.

Another pertinent downside to maintaining a high number of sectoral models, was a higher likelihood
of the loss of predictive power by an indicator over a period of time. This can manifest particularly in
any of the indices created with weights assigned to each indicator. This was surmised to be the case
within the “Professional and Administrative Services” model, in which the BPO activity indicator grew
in terms of its contribution to growth in the GDP category, diminishing the statistical importance of
other indicators present in the index. This could be addressed in several ways, with the most likely
outcome entailing the elimination of statistically insignificant variables within indices and/or the
inclusion of new variables.
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The complement of variables included in the nowcasting framework were found to accurately predict
the movement of quarterly GDP except for a few that were either poorly correlated or did not provide
sufficient causation. Nevertheless, multiple indicators presented structural breaks brought on by the
pandemic. This was rectified within the models by the inclusion of two dummy variables capturing
either the contraction, the rebound, or both, across 13 of the models following the pandemic, which
allowed for improvements in model fitness. As a result, it was determined that the general accuracy of
the sectoral models warranted their explicit inclusion and expansion, as they may be able to provide

critical insight to policy makers monitoring targeted industries.
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6.0 Conclusion

An accurate, reliable, and timely nowcasting estimator of quarterly GDP was deemed necessary to
grasp the movements within the economy following the pandemic. This paper went a step further
and reinforced the use of sectoral forecasts to provide policymakers with an added dimension of
information to better inform their decisions. Altogether, despite the challenges in implementing a
framework of this scale, the trade-off provided accurate estimates of not only quarterly GDP on a
whole, but sectoral movements present within the various categories of GDP.

It is critical to note that similarly to the way in which this framework was born out of a need following
the pandemic and revised to reflect the GDP rebasing exercise, further revisions will be necessary as
Belize’s economy matures. With the availability of a complement of sophisticated techniques aimed
at estimating quarterly GDP, and the race towards producing results with the least amount of lag time,
room exists to improve the framework considerably. As explored by Nakazawa (2022), non-traditional
indicators may be implemented to supplement underperforming models ran, utilising less-than-ideal

variables.

The decision to link the current framework to the statistical offices’ production-based approach to
calculating GDP prevented the inclusion of alternative data and restricted the number of variables
utilised in this study. Thus, the impact of external variables such as the nation’s leading trade partner’s
GDP growth, inflation, and price indices played no role in the generation of the current iteration of

the framework.

A worthwhile effort would be the exploration and use of alternative variables simultaneously to
generate a hybridised indicator list. This could prove to be a steppingstone to build a far more robust
framework. It is only through adherence to the notion that the only constant in nowcasting is change,
will more robust frameworks be produced.
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8.0 Appendix

Table A.1: Reclassification of Industrial Groupings

Base Year 2000

Base Year 2014

Notes

Agriculture, Hunting and Forestry

Fishing

Manufacturing (including Mining and Quarrying)

Electricity and Water

Construction

Wholesale and Retail Trade; Repair

Hotels and Restaurants

Transport and Communication

Other Private Services excluding (FISIM 1)

Producers of Government Services

Taxes on Products

Agriculture, Forestry and Fishing
Mining

Manufacturing
Electricity
Water Supply

Construction

Wholesale and Retail Trade
Accommodation and Food Service
Activities

Transportation

Information and Communication
Financial and Insurance Activities
Real Estate Activities

Professional Scientific and Technical
Activities

Adminstrative and Support Service
Activities

Arts, Entertainment, Recreation
Other Service Activities

Activities of Households as Employers
Public Administration and Defence
Education

Human Health and Social Work
Activities

Taxes and Subidies

Absorbed “Fishing”

Disaggregated from “Manufacturing

”

Disaggregated from “Electricity and
Water”

Disaggregated from “Electricity and
Water”

Disaggregated from “Transport and
Communication”

Disaggregated from “Transport and
Communication”

Disaggregated from “Other Private
Services”

Disaggregated from “Other Private
Services”

Disaggregated from “Other Private
Services”

Disaggregated from “Other Private
Services”

Disaggregated from “Other Private
Services”

Disaggregated from “Other Private
Services”

Disaggregated from “Other Private
Services”

Disaggregated from “Producers of
Government Services”

Disaggregated from “Producers of
Government Services”

Disaggregated from “Producers of
Government Services”
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Table A.2: Indicator and Index Component List

Sector Index Indicator Frequency
Primary Agricultural Index Grapefruit Deliveries Monthly
Orange Deliveries Monthly
Banana Production Monthly
Sugarcane Production Monthly
Other Crops Quarterly
Chicken Quarterly
Beef Quarterly
Conch Monthly
Farmed Shrimp Monthly
Fish Monthly
Lobster Monthly
Oil Production Value Monthly
Secondary Manufacturing Index Beer Quarterly
Flour Quarterly
Soft Drinks Quarterly
ONFC Monthly
GNFC Monthly
Grapefruit Concentrates Monthly
Orange Concentrates Monthly
Animal Feed Monthly
Fertilizer Quarterly
Dairy Production Quarterly
Sugar Production Monthly
Electricity Production Monthly
Water Distribution Monthly
Cement Imports Quarterly
Loans for Construction Monthly
Tertiary and Taxes Tourist Arrival Index Air Arrivals Monthly
Sea Arrivals Monthly
Cruise Arrivals Monthly
Land Arrivals Monthly
Transportation Index Sugar Production Monthly
Total Tourist Arrivals Monthly
Gross Merchandise Imports Monthly
Professional and Business Tax Monthly
Administrative Services Business Processing and Outsourcing Income Monthly
Index General Sales Tax Collections Monthly
Government Current Expenditure Monthly
Government Wages and Salaries Monthly
Government Current Revenue Monthly
Total Loans Monthly
Money Supply Monthly
Saria Monthly
Gross Merchandise Imports Monthly
Total Tourist Arrivals Monthly
General Sales Tax Collections Monthly
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Table A.3: Agriculture Sectoral Model Results

Dependent Variable: D{LAGDF)
Method: ARMA Maximum Likelihood (BFGS)
Date: 01/23/25 Time: 14:36
Sample: 200001 202204
Included observations: 92
Convergence achieved after 8 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
D(LAGDP{-2)) -0.957417 0.015964 -59.97285 0.0000
DiLAG) 0260063 0.087885 2959118 0.0040
D(LAG(-2)) 0180614 0.051598 3500427 0.0007
AR(2) 0.677062 0.059673 11.34612 0.0000
MALZ) 0571109 0.111837 5106608 0.0000
SIGMASQO 0.052209 0.005624 9283798 0.0000
R-squared 0809572 Mean dependentwvar 0.0073786
Adjusted R-squared 0798500 3.D.dependentvar 0.526476
S.E. of regression 0.236328 Akaike info criterian 0.051932
Sum squared resid 4803196 Schwarz criterion 0.216396
Log likelihood 3611143 Hannan-Quinn criter. 0118311
Durbin-Watson stat 2 665985
Inverted AR Roots 82 -.82
Inverted MA Roots -.00+.76i -.00-76i

Table A.4: Mining Sectoral Model Results

Dependent Variable: DILMNGDP)
Method: ARMA Maximum Likelihood (BFGS)
Date: 01/23/25 Time: 11:48
Sample: 201602 202204
Included observations: 27
Convergence achieved after 12 iterations

Coeflicient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
D{LOILVALUE) 0437011 0.159410 2741422 0.0114
MA1) -0.813823 0174622 -4660474 0.0001
SIGMASQ 0.049802 0.012571 3961604 0.0006
R-squared 0185561 Mean dependentvar -0.017352
Adjusted R-squared 0117691 35.D. dependentvar 0.251993
S.E. of regression 0.236700  Akaike info criterion 0100603
Sum sguared resid 1344648 Schwarz criterion 0.244585
Log likelihood 1641862 Hannan-Quinn criter. 0143416
Durbin-Watson stat 0774130

Inverted MA Roots

a1




Table A.5: Manufacturing Sectoral Model Results

Dependent Variable: DILMGDP)
Method: ARMA Maximum Likelihood (BFGS)
Date: 01/23/25 Time: 11:48

Sample: 2000011 202204
Included observations: 92

Convergence achieved after 15 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
ARIZ) -0.983319 0.003880 -26G6.0212 0.0000
MA2) 0.537107 0.083326 6.445322 0.0000
SIGMASO 0.019403 0.003485 5567921 0.0000
R-zquared 0.909778 Mean dependent var 0007273
Adjusted R-squared 0907751 5.D. dependentvar 0466289
S.E. of regression 0141624 Akaike info criterion -0.971082
Sum squared resid 1.785099 Schwarz criterion -0.888860
Log likelinood 47 67024 Hannan-Cluinn criter. -0.937902
Durbin-Watson stat 2.953667
Inverted AR Roots -00+1.00i -00-1.00i
Inverted MA Roots -00+.73i -00-73i

Table A.6: Electricity Sectoral Model Results

Dependent Variable: D(LEW)
Method: ARMA Maximum Likelinood (BFGS)
Date: 01/23/25 Time: 11:48

Sample: 200002 202204
Included observations: 81

Convergence achieved after 8 iterations
Coefficient covariance computed using outer praduct of gradients

Variable Coefficient Std. Error t-Statistic Prob.
D(LE) 0.979880 0.040833 23989725 0.0000
COVIDDUMMYZ0 0.042261 0.905283 0.046683 0.9629
AR(Z) 0162963 0.080724 2018773 0.0466
MA[T) 0.838484 0.084452 8877328 0.0000
SIGMASQ 0.012417 0.000747 16.61883 0.0000
R-sguared 0913655 Mean dependentvar 0011263
Adjusted R-squared 0.909639 S.D. dependentvar 0.381316
S.E. of regression 0114624  Akaike info criterion -1.429675
Sum squared resid 1.129932  Schwarz criterion -1.291716
Log likelihood 70.05022 Hannan-Quinn criter. -1.374017
Durbin-Watson stat 1.244513
Inverted AR Roots A0 -40
Inverted MA Roots -84
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Table A.7: Water Supply Sectoral Model Results

Dependent Yariable: DILWGDP)
Method: ARMA Maximum Likelihood (BFGS)
Date: 01/23/25 Time: 11:48
Sample: 200001 202204
Included observations: 92

Convergence achieved after 4 iterations

Coeflicient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
D{LWGDP(-2)) -0.8B6236 0.053204 -16.65744 0.0000
LWATERSUP 0.002249 0.000822 2438512 0.0168
COVIDDUMMY20 -0.056594 0.042635 -1.327388 01879
COVIDDUMMY 21 -0.005001 0031498  -0.158776 08742

AR(Z) 0.497993 0.105832 4701067 0.0000
SIGMASO 0.001349 0.000214 6.314172 0.0000

R-squared 0.611911 Mean dependent var 0.008487
Adjusted R-sgquared 0.589348 35.D. dependentvar 0.059274
S.E. of regression 0.037934 Akaike info criterion -3.634126
Sum squared resid 0.124078 Schwarz criterion -3.469662
Laog likelihood 1731698  Hannan-Cuinn criter. -3.567747
Durbin-Watson stat 2.073039

Inverted AR Roots a1 =71

Table A.8: Construction Sectoral Model Results

Dependent Variable: D{LCGDRP)
Method: ARMA Maximum Likelihood (BFGS)
Date: 01/23/25 Time: 11:48
Sample: 200802 202204
Included observations: 59
Convergence achieved after 4 iterations

Coeflicient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
D{LISUPMES) 0279318 0.081815 3.042181 0.0036
CovID -0.008246 0028472  -0.289620 07732
ARI3) 0.314001 0.153009 2052177 0.0448
SIGMASC 0.008510 0.001401 6.074883 0.0000
R-squared 0168835 Mean dependentvar 0.003743
Adjusted R-squared 0123499 3.0, dependentvar 0.102065
S.E. ofregression 0.085546 Akaike info criterion -1.778964
Sum squared resid 0502002 Schwarz criterion -1.638114
Log likelihood 56.47945 Hannan-Quinn criter. -1.723882
Durbin-Watson stat 1.893635
Inverted AR Roots a7 B1-61i B1+61  -00-87i
- 00+ 87i -61+61 -61+61i -87




Table A.9: Wholesale and Retail Trade Sectoral Model Results

Dependent Variable: D(LWR)

Method: ARMA Maximum Likelihood (BFGS)

Date: 01/23/125 Time: 11:48
Sample: 200002 202204
Included observations: 91

Convergence achieved after 5 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
DILWR(-1)) -0.251061 0.073810 -3.401471 0.0010
DILTOUR) 0.026066 0.008748 2979781 0.0038

D{LM) 0.354483 0.041138 8617007 0.0000
DILGTAX) 0.101250 0.053152 1.904892 0.0603
COVID 0.003761 0.009900 0.379923 0.7050
AR(4) 0.322154 0.121497 2651533 0.0096
MA{1) 0.276300 0123095  -2.244603 0.0275
SIGMASD 0.000985 0.000160 6.149340 0.0000
R-squared 0.798565 Mean dependentvar 0.006705
Adjusted R-squared 0.781576 S.D. dependentvar 0.070330
S.E. of regression 0.032869 Akaike info criterion -3.903102
Sum squared resid 0.089672 Schwarz criterion -3.682367
Log likelihood 1855911 Hannan-Quinn criter. -3.814048
Dwurbin-Watson stat 1.781848
Inverted AR Roots 75 - 00+ 75i -.00-.75i -75
Inverted MA Roots 28

Table A.10: Hotels and Restaurant Activities Sectoral Model Results

Dependent Variable: DILHR)

Method: ARMA Maximum Likelinood (BFGS)

Date: 012325 Time: 11:48
Sample: 200002 202204
Included observations: 81

Convergence achieved after 20 iterations
Coefficient covariance computed using outer product of gradients

Yariable Coefficient Std. Error t-Statistic Prob.
DILTOUR) 1.011395 0.019854 50.94119 0.0000
COVIDDUMMYZ20(2) 0.099296 0.070730 1.403875 0.1640
AR(Z) -0.977235 0.038267  -27.70944 0.0000
MAL2) 0.894938 0.099618 2.8983709 0.0000
SIGMASQ 0.004656 0.000425 10.94714 0.0000
R-squared 0.986596 Mean dependentvar 0.000493
Adjusted R-squared 0985973 3.0. dependentwvar 0.592636
S.E. of regression 0.070190 Akaike info criterion -2.409464
Sum squared resid 0423694 Schwarz criterion -2.271504
Log likelihood 114.6306 Hannan-Cuinn criter. -2.353806
Durbin-Watson stat 2033262
Inverted AR Roots -.00+.99i -00-99i
Inverted MA Roots -.00+.95j -.00-95i
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Table A.11: Transportation Sectoral Model Results

Dependent Variable: DILTGDFP)
Method: ARMA Maximum Likelihood (BFGS)
Date: 01/23/25 Time: 11:48
Sample: 2000Q1 202204

Included observations: 92

Convergence achieved after 18 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
DiLTGDP{-1)) -0.285446 0.039968  -7.141813 0.0000
D{LTGDP{-3)) -0.379723 0.046877  -8.100392 0.0000

D{LGTAKX) 0181454 00650585 2789212 00066

D{LTRAM) 0579456 0.040728 14 22750 0.0000
DiLM) 0127852 0.065417 1.954405 0.0541
DiLM{-2)) -0.280217 0.056533  -4.956707 0.0000
DiLAR) -0.075923 0.017069  -4.448056 0.0000
AR(1) -0.627151 0258206  -2.428879 0.0173
MAT) 0.813046 0.191382 4248067 0.0001
SIGMASQ 0.004191 0.000657 6.379533 0.0000
R-squared 0.879385 Mean dependentvar 0.007685
Adjusted R-squared 0866147 35.D. dependentvar 0187420
S.E. of regression 0.068569 Akaike info criterion -2.417928
Sum squared resid 0.385545 Schwarz criterion -2.143821
Log likelihood 121.2247  Hannan-Cluinn criter. -2. 307296
Durbin-Watson stat 1.971325
Inverted AR Roots - 63
Inverted MA Roots -81

Table A.12: Financial Activities Sectoral Model Results

Dependent Vanable: DILOPS)
Method: ARMA Maxdimum Likelihood (BFGS)
Date: 01/23/25 Time: 11:48
Sample; 200001 202204

Included observations: 92

Convergence achieved after 5 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error f-Statistic Prob.
D(LMZ) 0.017598 0.002536 6.938413 0.0000
CovID 0.003273 0.011414 0.286779 0.7750
LDEP 0.008798 0.001962 4483737 0.0000
LPROFADMIN =0.006125 0.001794 -3.414911 0.0010
ARI(G) -0.271475 0141426 -1.919562 0.0583
MA[1) 0.631339 0.119635 R2TT203 0.0000
SIGMAST 0.000495 6.84E-05 7227406 0.0000
R-squared 0584432 Mean dependentvar 0.0155582
Adjusted R-squared 0.555098 S.0. dependentvar 0.034690
S.E. of regression 0.023139 Akaike info criterion -4, 610682
Sum squared resid 0.045509 Schwarz criterion -4.418807
Log likelihood 219.0914 Hannan-Quinn criter, -4,533240
Durbin-Watson stat 1.753621
Inverted AR Roots T0+ 400 T0-40i 00-80i =00+ 80i
-70+.40i - 70-.40i
Inverted MA Roots =63




Table A.13: : Real Estate Activities Sectoral Model Results

Dependent Variable: D(LRGDF)

Method: ARMA Maximum Likelihood (BFGS)

Date: 01/23/125 Time: 11:48

Sample: 200001 202204

Included observations: 92

Convergence achieved after 5 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
D{LRGDP{-1}) 0606598 0082181 Famzo7 0.0000
DILRGDP{-2}) -0.305026 0084141  -3.625164 0.0005

D{LHOUSCPI1)) 0066783 0.038047 1755271 00829

C 0.002973 0.000735 4 042421 0.0001

CovID -0.001853 0002312 -0.801375 0.4252

AR(4) -0.299633 0114531 -32.489315 0.0008

MA(G) 0.612908 0115492 5.306954 0.0000

SIGMASC 1.41E-05 244E-06 5785851 0.0000

R-squared 0530415 Mean dependentvar 0.004335

Adjusted R-squared 0481283 S.D. dependentvar 0.005510

S.E. of regression 0.003930 Akaike info criterion -8.118118

Sum squared resid 0.001297  Schwarz criterion -7.898832

Log likelinood 381.4334 Hannan-Cuinn criter. -8.029612

F-statistic 13.55447  Durbin-Watson stat 1.879108

Prob{F-statistic) 0.000000
Inverted AR Roots _BE-56i BE- 56i - 56+ 56i - 56+ 56i
Inverted MA Roots B0+ 46i 80-.46i - 00+92i - 00-92
- 80-.46i - B0+ 46i

Table A.14: : Professional and Administrative Activities Sectoral Model Results

Dependent Variable: D(LPGDF)

Method: ARMA Maximum Likelihood (BFGS)

Date: 01/23/25 Time: 11:48

Sample: 200003 202204

Included observations: 90

Convergence achieved after 7 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.

D(LPROFADMIMN) -0.507803 0107345  -4.730579 0.0000
D(LPROFADMIMNG-1)) 0.611125 0.112672 5.423950 0.0000
COVIDDUMMY20 0.033136 0.036308 0.912638 0.3641

D(LAR) 0.195428 0.030595 6.387826 0.0000
DiLAR(-1}) 0.194533 0.027617  -7.043860 0.0000
AR(3) -0.335579 0109793  -3.056464 0.0030
MA1) -0.664597 0.093261 -7.126238 0.0000
SIGMASQ 0.010886 0.001906 5711173 0.0000
R-squared 0681096 Mean dependantvar 0.012398
Adjusted R-squared 0653872 35.D. dependentvar 0.185798
S E ofregression 0109310 Akaike info criterion -1.492032
Sum squared resid 0979784 Schwarz criterion -1.269826
Log likelinood 7514142 Hannan-Quinn criter. -1.402425
Durbin-VWatson stat 1.903085
Inverted AR Roots 35+.60i 35-.60i -69

Inverted MA Roots 66




Table A.15: Public Admin. And Defence Activities Sectoral Model Results

Dependent Variable: DILGGDP)

Method: ARMA Maximum Likelihood (BFGS)

Date: 01/23/25 Time: 11:48

Sample: 2000Q1 202204

Included observations: 92

Convergence achieved after 7 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefiicient Std. Error t-Statistic Prob.
D(LGGDP{-1)) -0.466679 0087451 -5.336454 0.0000
D(LGGDP{-2)) -0.385494 0100651  -3.830019 0.0002
DILGGDP(-3)) -0.413361 0100691  -4.105228 0.0001

COVIDDUMMY2Z20 -0.214200 0039130 -5.474071 0.0000
COVIDDUMMY 21 0122336 0.026621 4595439 0.0000
C 0.018528 0.003275 5.489311 0.0000
MAL4) -0.451867 0114269  -3.954415 0.0002
SIGMASQ 0.001923 0.000306 6.291175 0.0000
R-zquared 0.404959 Mean dependentvar 0.006825
Adjusted R-squared 0355373 S.0. dependentvar 0.057161
S.E. of regression 0.045893 Akaike info criterion -3.232117
Sum squared resid 0176922 Schwarz criterion -3.012831
Log likelinood 156.6774 Hannan-Quinn criter. -3.14361
F-statistic 8.166693 Durbin-Watson stat 2.069976
Prob(F-statistic) 0.000000
Inverted MA Roots 82 00-82i 00+.82i -82

Table A.16: Education and Health Activities Sectoral Model Results

Dependent Variable: D(LEHGDF)

Method: ARMA Maximum Likelihood (BFGS)

Date: 01/23/25 Time: 11:48

Sample: 200001 202204

Included observations: 92

Convergence achieved after 3 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
D{LEHGDP{-1)) -0.897954 0.006543 1525337 0.0000
D{LEHGDP{-2)) -0.895685 0.008349  -112.5250 0.0000
D{LEHGDP{-2)) -0.894152 0.004424 2247038 0.0000

AR(1) 0.497574 0.075982 6.299839 0.0000
SIGMASQ 0.001118 0.000126 8.901989 0.0000
R-squared 0.887677 WMean dependentvar 0.003568
Adjusted R-squared 0.997570 5.0. dependentvar 0.697626
S.E. of regression 0.034387 Akaike info criterion -3.846384
Sum squared resid 0102873 Schwarz criterion -3.709331
Log likelihood 181.8337 Hannan-Quinn criter. -3.791068
Durbin-Watson stat 2.023341

Inverted AR Roots A0




Table A.17: Other Service Activities Sectoral Model Results

Dependent Variable: D{LOGDP)
Method: ARMA Maximum Likelihood (BFGS)
Date: 0123125 Time: 11:48

Sample: 200002 202204
Included observations: 91

Convergence achieved after 8 iterations
Coefficient covariance computed using outer product of gradients

Yariable Coefficient Std. Errar t-Statistic Prob.
D{LTOUR) 0.076189 0.016196 4704254 0.0000
MALT) -0.773286 0.077393 -8.991717 0.0000

SIGMASQ 0.012172 0.002921 4167142 0.0001
R-squared 0324461 Mean dependentvar 0.004424
Adjusted R-squared 0308108 S.D. dependentvar 0.1344975
3.E. of regression 0112191  Akaike info criterion -1.484808
Sum squared resid 1107635 Schwarz criterion -1.412032
Log likelihood 71.01375 Hannan-Cuinn criter. -1.461413
Durbin-\Watson stat 1.655286
Inverted MA Roots A7

Table A.18: Taxes and Subsidies Sectoral Model Results

Dependent Variable: D{LTAX)

Method: Least Squares

Date: 01/23/25 Time: 11:48

Sample: 200001 202204
Included observations: 92

Variable Coefficient Std. Error t-Statistic Prob.
DM} 0.466131 0.041244 11.30189 0.0000
DILGTAX) 0.176653 0.049346 3.5788849 0.0006
COVIDDUMMYZ21 0.015778 0.024035 0.656462 05132
R-zquared 0.654893 Mean dependent var 0.012121
Adjusted R-squared 0.647138 3S.D. dependentvar 0.073999
S.E. of regression 0.046927 Akaike info criterion -3.248367
Sum squared resid 0.195984 Schwarz criterion -3.166135
Log likelihood 152.4249  Hannan-Quinn criter. -3.215178

Durbin-VWatson stat 2197745
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